High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin High-speed atomic force microscopy shows dynamic molecular processes in photo-activated bacteriorhodopsin

Access this Article

Search this Article

Abstract

金沢大学理工研究域数物科学系Dynamic changes in protein conformation in response to external stimuli are important in biological processes, but it has proved difficult to directly visualize such structural changes under physiological conditions1-10. Here, we show that high-speed atomic force microscopy7 can be used to visualize dynamic changes in stimulated proteins. High-resolution movies of a light-driven proton pump, bacteriorhodopsin, reveal that, upon illumination, a cytoplasmic portion of each bacteriorhodopsin monomer is brought into contact with adjacent trimers. The bacteriorhodopsin-bacteriorhodopsin11,12 interaction in the transiently formed assembly engenders both positive and negative cooperative effects in the decay kinetics as the initial bacteriorhodopsin recovers and, as a consequence, the turnover rate of the photocycle is maintained constant, on average, irrespective of the light intensity. These results confirm that high-resolution visualization is a powerful approach for studying elaborate biomolecular processes under realistic conditions. © 2010 Macmillan Publishers Limited. All rights reserved.

Journal

  • Nature Nanotechnology

    Nature Nanotechnology 5(3), 208-212, 2010-03-01

    Nature Publishing Group

Cited by:  8

Codes

  • NII Article ID (NAID)
    120002086392
  • NII NACSIS-CAT ID (NCID)
    AA12163154
  • Text Lang
    ENG
  • Article Type
    Journal Article
  • ISSN
    1748-3387
  • Data Source
    CJPref  IR 
Page Top