A HighSpeed Square Root Algorithm for Extension fields Especially for Fast Extension Fields
Access this Article
Search this Article
Author(s)
Abstract
A square root (SQRT) algorithm in extension field F(p(m))(m = r(0)r(1)･･･r(n−1)･2(d), r(i) : odd prime, d : positive integer) is proposed in this paper. First, a conventional SQRT algorithm, the TonelliShanks algorithm, is modified to compute the inverse SQRT in F(p(2d)), where most of the computations are performed in the corresponding subfields F(p(2i)) for 0 ≤ i ≤ d1. Then the Frobenius mappings with addition chain are adopted for the proposed SQRT algorithm, in which a lot of computations in a given extension field F(p(m)) are also reduced to those in a proper subfield by the norm computations. Those reductions of the field degree increase efficiency in the SQRT implementation. The TonelliShanks algorithm and the proposed algorithm in F(p(6)) and F(p(10)) were implemented on a Core2 (2.66 GHz) using the C++ programming language. The computer simulations showed that, on average, the proposed algorithm accelerated the SQRT computation by 6 times in F(p(6)), and by 10 times in F(p(10)), compared to the TonelliShanks algorithm.
Journal

 Memoirs of the Faculty of Engineering, Okayama University

Memoirs of the Faculty of Engineering, Okayama University (43), 99107, 200901
Faculty of Engineering, Okayama University