HILBERT-SPEISER NUMBER FIELDS AND STICKELBERGER IDEALS; THE CASE p = 2

この論文にアクセスする

この論文をさがす

抄録

We say that a number field F satisfies the condition (H′<sub>2<sup>m</sup></sub>) when any abelian extension of exponent dividing 2<sup>m </sup> has a normal basis with respect to rings of 2-integers. We say that it satisfies (H′<sub>2<sup>∞</sup></sub>) when it satisfies (H′<sub>2<sup>m</sup></sub>) for all m. We give a condition for F to satisfy (H'<sub>2<sup>m</sup></sub>), and show that the imaginary quadratic fields F = Q(√−1) and Q(√−2) satisfy the very strong condition (H′<sub>2<sup>∞</sup></sub>) if the conjecture that h<sup>+</sup><sub>2<sup>m</sup></sub> = 1 for all m is valid. Here, h<sup>+</sup><sub>2<sup>m</sup></sub>) is the class number of the maximal real abelian field of conductor 2<sup>m</sup>.

収録刊行物

  • Mathematical Journal of Okayama University

    Mathematical Journal of Okayama University 54(1), 33-48, 2012-01

    Department of Mathematics, Faculty of Science, Okayama University

各種コード

  • NII論文ID(NAID)
    120003610062
  • NII書誌ID(NCID)
    AA00723502
  • 本文言語コード
    ENG
  • 資料種別
    journal article
  • ISSN
    0030-1566
  • データ提供元
    IR 
ページトップへ