Essential roles of ECAT15-2/Dppa2 in functional lung development.

HANDLE 1 Citations Open Access

Search this article

Abstract

Many transcription factors and DNA binding proteins play essential roles in the development of organs in which they are highly and/or specifically expressed. Embryonic stem cell (ESC)-associated transcript 15-1 (ECAT15-1) and ECAT15-2, also known as developmental pluripotency-associated 4 (Dppa4) and Dppa2, respectively, are enriched in mouse ESCs and preimplantation embryos, and their genes encode homologous proteins with a common DNA binding domain known as the SAP motif. Previously, ECAT15-1 was shown to be important in lung development, while it is dispensable in early development. In this study, we generated ECAT15-2 single and ECAT15-1 ECAT15-2 double knockout (double KO) mice and found that almost all mutants, like ECAT15-1 mutants, died around birth with respiratory defects. Paradoxically, the expression of neither ECAT15-1 nor ECAT15-2 was detected in lung organogenesis. Several genes, such as Nkx2-5, Gata4, and Pitx2, were downregulated in the ECAT15-2-null lung. On the other hand, genomic DNA of these genes showed inactive chromatin statuses in ECAT15-2-null ESCs, but not in wild-type ESCs. The chromatin immunoprecipitation (ChIP) assay revealed that ECAT15-2 binds to the regulatory region of Nkx2-5 in ESCs. These data suggest that ECAT15-2 has important roles in lung development, where it is no longer expressed, by leaving epigenetic marks from earlier developmental stages.

Journal

Citations (1)*help

See more

Details 詳細情報について

  • CRID
    1050564285679676544
  • NII Article ID
    120003674151
  • NII Book ID
    AA10620925
  • ISSN
    02707306
  • HANDLE
    2433/152301
  • Text Lang
    en
  • Article Type
    journal article
  • Data Source
    • IRDB
    • CiNii Articles

Report a problem

Back to top