Parabolic temperature profile and second-order temperature jump of a slightly rarefied gas in an unsteady two-surface problem

HANDLE Open Access

Search this article

Abstract

The behavior of a slightly rarefied monatomic gas between two parallel plates whose temperature grows slowly and linearly in time is investigated on the basis of the kinetic theory of gases. This problem is shown to be equivalent to a boundary-value problem of the steady linearized Boltzmann equation describing a rarefied gas subject to constant volumetric heating. The latter has been recently studied by Radtke, Hadjiconstantinou, Takata, and Aoki (RHTA) as a means of extracting the second-order temperature jump coefficient. This correspondence between the two problems gives a natural interpretation to the volumetric heating source and explains why the second-order temperature jump observed by RHTA is not covered by the general theory of slip flow for steady problems. A systematic asymptotic analysis of the time-dependent problem for small Knudsen numbers is carried out and the complete fluid-dynamic description, as well as the related half-space problems that determine the structure of the Knudsen layer and the coefficients of temperature jump, are obtained. Finally, a numerical solution is presented for both the Bhatnagar-Gross-Krook model and hard-sphere molecules. The jump coefficient is also calculated by the use of a symmetry relation; excellent agreement is found with the result of the numerical computation. The asymptotic solution and associated second-order jump coefficient obtained in the present paper agree well with the results by RHTA that are obtained by a low variance stochastic method.

Journal

Details 詳細情報について

  • CRID
    1050001335739902336
  • NII Article ID
    120004920388
  • NII Book ID
    AA10986202
  • ISSN
    10706631
  • HANDLE
    2433/160670
  • Text Lang
    en
  • Article Type
    journal article
  • Data Source
    • IRDB
    • CiNii Articles

Report a problem

Back to top