Effects of alkyl chain length and anion size on thermal and structural properties for 1-alkyl-3-methylimidazolium hexafluorocomplex salts (C(x)MImAF6, x = 14, 16 and 18; A = P, As, Sb, Nb and Ta).

HANDLE Open Access

Abstract

A series of 1-alkyl-3-methylimidazolium hexafluorocomplex salts (C(x)MImAF(6), x = 14, 16 and 18, A = P, As, Sb, Nb and Ta) have been characterized by thermal analysis, X-ray diffraction and polarized optical microscopy. A liquid crystalline mesophase is observed for all the C(16)MIm and C(18)MIm salts. The C(14)MIm(+) cation gives a liquid crystalline mesophase only with PF(6)(-). The temperature range of the liquid crystalline mesophase increases with an increase in alkyl chain length or with decrease in anion size. Single-crystal X-ray diffraction revealed that all the C(18)MImAF(6) salts (A = P, As, Sb, Nb and Ta) are isostructural with each other in the crystalline phase and have a layered structure. The interdigitated alkyl chain of the cation has a bent shape like a spoon near the imidazolium ring in the crystalline phase at -100 °C and is tilted with respect to the sheets of the imidazolium headgroups and anions. An increase of temperature increases the ratio of an all-trans conformation to the bent conformation in the crystalline phase. X-ray diffraction and polarized optical microscopy suggested that the liquid crystalline mesophase has a smectic A(2) structure. The interlayer distance increases with a decrease in the anion size since the smaller anion has a stronger coulombic interaction with the imidazolium headgroup, resulting in the decrease of the interdigitated part to give a larger layer spacing.

Journal

Details 詳細情報について

  • CRID
    1050282810735943552
  • NII Article ID
    120005241357
  • ISSN
    14779226
  • HANDLE
    2433/169693
  • Text Lang
    en
  • Article Type
    journal article
  • Data Source
    • IRDB
    • CiNii Articles

Report a problem

Back to top