Access this Article

Search this Article


Fish scales are a form of calcified tissue similar to that found in human bone. In medaka scales, we detected both osteoblasts and osteoclasts and subsequently developed a new scale assay system. Using this system, we analyzed the osteoblastic and osteoclastic responses under 2-, 3-, and 4-gravity (G) loading by both centrifugation and vibration. After loading for 10 min, the scales from centrifugal and vibration loading were incubated for 6 and 24 hrs, respectively, after which the osteoblastic and osteoclastic activities were measured. Osteoblastic activity significantly increased under 2- to 4-G loading by both centrifugation and vibration. In contrast, we found that osteoclastic activity significantly decreased under 2- and 3-G loading in response to both centrifugation and vibration. Under 4-G loading, osteoclastic activity also decreased on centrifugation, but significantly increased under 4-G loading by vibration, concomitant with markedly increased osteoblastic activity. Expression of the receptor activator of the NF-αB ligand (RANKL), an activation factor of osteoclasts expressed in osteoblasts, increased significantly under 4-G loading by vibration but was unchanged by centrifugal loading. A protein sequence similar to osteoprotegerin (OPG), which is known as an osteoclastogenesis inhibitory factor, was found in medaka using our sequence analysis. The ratio of RANKL/OPG-like mRNAs in the vibration-loaded scales was significantly higher than that in the control scales, although there was no difference between centrifugal loaded scales and the control scales. Accordingly, medaka scales provide a useful model by which to analyze bone metabolism in response to physical strain. © 2013 Zoological Society of Japan.


  • Zoological science

    Zoological science 30(3), 217-223, 2013-03

    Zoological Society of Japan


  • NII Article ID (NAID)
  • Text Lang
  • Article Type
    journal article
  • ISSN
  • NDL Article ID
  • NDL Call No.
  • Data Source
    NDL  IR 
Page Top