Access this Article

Search this Article

Abstract

The spectrum of discrete Schrödinger operator L + V on the d-dimensional lattice is considered, where L denotes the discrete Laplacian and V a delta function with mass at a single point. Eigenvalues of L + V are specified and the absence of singular continuous spectrum is proven. In particular it is shown that an embedded eigenvalue does appear for d ≥ 5 but does not for 1 ≤ d ≤ 4.

Journal

  • JMI : journal of math-for-industry

    JMI : journal of math-for-industry 4, 105-108, 2012

    Faculty of Mathematics, Kyushu University

Codes

  • NII Article ID (NAID)
    120005372036
  • NII NACSIS-CAT ID (NCID)
    AA12444018
  • Text Lang
    ENG
  • Article Type
    journal article
  • Journal Type
    大学紀要
  • ISSN
    1884-4774
  • NDL Article ID
    024097304
  • NDL Call No.
    Z63-D421
  • Data Source
    NDL  IR 
Page Top