Synthesis and evaluation of 18F-labeled mitiglinide derivatives as positron emission tomography tracers for β-cell imaging.

HANDLE Open Access

Search this article

Abstract

Measuring changes in β-cell mass in vivo during progression of diabetes mellitus is important for understanding the pathogenesis, facilitating early diagnosis, and developing novel therapeutics for this disease. However, a non-invasive method has not been developed. A novel series of mitiglinide derivatives (o-FMIT, m-FMIT and p-FMIT; FMITs) were synthesized and their binding affinity for the sulfonylurea receptor 1 (SUR1) of pancreatic islets were evaluated by inhibition studies. (+)-(S)-o-FMIT had the highest affinity of our synthesized FMITs (IC50=1.8μM). (+)-(S)-o-[(18)F]FMIT was obtained with radiochemical yield of 18% by radiofluorination of racemic precursor 7, hydrolysis, and optical resolution with chiral HPLC; its radiochemical purity was >99%. In biodistribution experiments using normal mice, (+)-(S)-o-[(18)F]FMIT showed 1.94±0.42% ID/g of pancreatic uptake at 5min p.i., and decreases in radioactivity in the liver (located close to the pancreas) was relatively rapid. Ex vivo autoradiography experiments using pancreatic sections confirmed accumulation of (+)-(S)-o-[(18)F]FMIT in pancreatic β-cells. These results suggest that (+)-(S)-o-[(18)F]FMIT meets the basic requirements for an radiotracer, and could be a candidate positron emission tomography tracer for in vivo imaging of pancreatic β-cells.

Journal

Related Projects

See more

Details 詳細情報について

  • CRID
    1050001335794247680
  • NII Article ID
    120005456028
  • NII Book ID
    AA10938083
  • ISSN
    09680896
  • HANDLE
    2433/188927
  • Text Lang
    en
  • Article Type
    journal article
  • Data Source
    • IRDB
    • CiNii Articles
    • KAKEN

Report a problem

Back to top