chlB requirement for chlorophyll biosynthesis under short photoperiod in Marchantia polymorpha L.

Access this Article


Chlorophylls (Chls) play pivotal roles in energy absorption and transduction and also in charge separation in reaction centers in all photosynthetic organisms. In Chl biosynthesis steps, only a step for the enzymatic reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide) is mediated by both nuclear- and chloroplast-encoded genes in land plants. Many plants encode the genes for light-dependent Pchlide reductase (LPOR) and light-independent Pchlide reductase (DPOR) in the nucleus and chloroplast genome, respectively. During the diversification of land plants, the reduction step of Pchlide to Chlide has become solely dependent on LPOR, and the genes for DPOR have been lost from chloroplast genome. It remains unclear why DPOR persists in some land plants, how they were eliminated from chloroplast genomes during the diversification of land plants, and under what environmental conditions DPOR was required. We demonstrate that DPOR is functional in liverwort (Marchantia polymorpha L.) and plays an important role in Chl biosynthesis. Having established a plastid transformation system in liverwort, we disrupted chlB, which encodes a subunit of DPOR in the M. polymorpha chloroplast genome. Morphological and Chl content analysis of a chlB mutant grown under different photoperiods revealed that DPOR is particularly required for Chl biosynthesis under short-day conditions. Our findings suggest that an environmental condition in the form of photoperiod is an important factor that determines the loss or retention of chloroplast-encoded genes mediating Pchlide reduction to Chlide.


  • Genome biology and evolution

    Genome biology and evolution 6(3), 620-628, 2014-03

    Oxford University Press


  • NII Article ID (NAID)
  • Text Lang
  • Article Type
    journal article
  • ISSN
  • Data Source
Page Top