Access this Article

Search this Article

Abstract

Activation-induced cytidine deaminase (AID) contributes to inflammation-associated carcinogenesis through its mutagenic activity. In our study, by taking advantage of the ability of AID to induce genetic aberrations, we investigated whether liver cancer originates from hepatic stem/progenitor cells that accumulate stepwise genetic alterations. For this purpose, hepatic progenitor cells enriched from the fetal liver of AID transgenic (Tg) mice were transplanted into recipient "toxin-receptor mediated conditional cell knockout" (TRECK) mice, which have enhanced liver regeneration activity under the condition of diphtheria toxin treatment. Whole exome sequencing was used to determine the landscape of the accumulated genetic alterations in the transplanted progenitor cells during tumorigenesis. Liver tumors developed in 7 of 11 (63.6%) recipient TRECK mice receiving enriched hepatic progenitor cells from AID Tg mice, while no tumorigenesis was observed in TRECK mice receiving hepatic progenitor cells of wild-type mice. Histologic examination revealed that the tumors showed characteristics of hepatocellular carcinoma and partial features of cholangiocarcinoma with expression of the AID transgene. Whole exome sequencing revealed that several dozen genes acquired single nucleotide variants in tumor tissues originating from the transplanted hepatic progenitor cells of AID Tg mice. Microarray analyses revealed that the majority of the mutations (>80%) were present in actively transcribed genes in the liver-lineage cells. These findings provided the evidence suggesting that accumulation of genetic alterations in fetal hepatic progenitor cells progressed to liver cancers, and the selection of mutagenesis depends on active transcription in the liver-lineage cells.

Journal

  • International journal of cancer

    International journal of cancer 134(5), 1067-1076, 2013-09-16

    wiley

Codes

  • NII Article ID (NAID)
    120005588051
  • NII NACSIS-CAT ID (NCID)
    AA00680002
  • Text Lang
    ENG
  • Article Type
    journal article
  • ISSN
    0020-7136
  • Data Source
    IR 
Page Top