Increased oxidative stress in AOA3 cells disturbs ATM-dependent DNA damage responses.

Access this Article

Search this Article


Ataxia telangiectasia (AT) is caused by a mutation in the ataxia-telangiectasia-mutated (ATM) gene; the condition is associated with hyper-radiosensitivity, abnormal cell-cycle checkpoints, and genomic instability. AT patients also show cerebellar ataxia, possibly due to reactive oxygen species (ROS) sensitivity in neural cells. The ATM protein is a key regulator of the DNA damage response. Recently, several AT-like disorders have been reported. The genes responsible for them are predicted to encode proteins that interact with ATM in the DNA-damage response. Ataxia with oculomotor apraxia types 1-3 (AOA1, 2, and 3) result in a neurodegenerative and cellular phenotype similar to AT; however, the basis of this phenotypic similarity is unclear. Here, we show that the cells of AOA3 patients display aberrant ATM-dependent phosphorylation and apoptosis following γ-irradiation. The ATM-dependent response to H2O2 treatment was abrogated in AOA3 cells. Furthermore, AOA3 cells had reduced ATM activity. Our results suggest that the attenuated ATM-related response is caused by an increase in endogenous ROS in AOA3 cells. Pretreatment of cells with pyocyanin, which induces endogenous ROS production, abolished the ATM-dependent response. Moreover, AOA3 cells had decreased homologous recombination (HR) activity, and pyocyanin pretreatment reduced HR activity in HeLa cells. These results indicate that excess endogenous ROS represses the ATM-dependent cellular response and HR repair in AOA3 cells. Since the ATM-dependent cell-cycle checkpoint is an important block to carcinogenesis, such inactivation of ATM may lead to tumorigenesis as well as neurodegeneration.


  • Mutation research. Genetic toxicology and environmental mutagenesis

    Mutation research. Genetic toxicology and environmental mutagenesis (782), 42-50, 2015-04

    Elsevier B.V.


  • NII Article ID (NAID)
  • Text Lang
  • Article Type
    journal article
  • ISSN
  • Data Source
Page Top