Access this Article

Abstract

There is a high death rate of lung cancer patients. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are effective in some lung adenocarcinoma patients with EGFR mutations. However, a significant number of patients show primary and acquire resistance to EGFR-TKIs. Although the Akt kinase is commonly activated due to various resistance mechanisms, the key targets of Akt remain unclear. Here, we show that the Akt-β-catenin pathway may be a common resistance mechanism. We analyzed gene expression profiles of gefitinib-resistant PC9M2 cells that were derived from gefitinib-sensitive lung cancer PC9 cells and do not have known resistance mechanisms including EGFR mutation T790M. We found increased expression of Axin, a β-catenin target gene, increased phosphorylation of Akt and GSK3, accumulation of β-catenin in the cytoplasm/nucleus in PC9M2 cells. Both knockdown of β-catenin and treatment with a β-catenin inhibitor at least partially restored gefitinib sensitivity to PC9M2 cells. Lung adenocarcinoma tissues derived from gefitinib-resistant patients displayed a tendency to accumulate β-catenin in the cytoplasm. We provide a rationale for combination therapy that includes targeting of the Akt-β-catenin pathway to improve the efficacy of EGFR-TKIs.

Journal

  • Scientific Reports

    Scientific Reports (5), 13076, 2015-08-13

    Nature Publishing Group

Codes

  • NII Article ID (NAID)
    120005764206
  • Text Lang
    ENG
  • Article Type
    journal article
  • ISSN
    2045-2322
  • Data Source
    IR 
Page Top