Cold sensitivity of TRPA1 is unveiled by the prolyl hydroxylation blockade-induced sensitization to ROS

HANDLE Open Access

Abstract

Mammalian transient receptor potential ankyrin 1 (TRPA1) is a polymodal nociceptor that plays an important role in pain generation, but its role as a cold nociceptor is still controversial. Here, we propose that TRPA1 can sense noxious cold via transduction of reactive oxygen species (ROS) signalling. We show that inhibiting hydroxylation of a proline residue within the N-terminal ankyrin repeat of human TRPA1 by mutation or using a prolyl hydroxylase (PHD) inhibitor potentiates the cold sensitivity of TRPA1 in the presence of hydrogen peroxide. Inhibiting PHD in mice triggers mouse TRPA1 sensitization sufficiently to sense cold-evoked ROS, which causes cold hypersensitivity. Furthermore, this phenomenon underlies the acute cold hypersensitivity induced by the chemotherapeutic agent oxaliplatin or its metabolite oxalate. Thus, our findings provide evidence that blocking prolyl hydroxylation reveals TRPA1 sensitization to ROS, which enables TRPA1 to convert ROS signalling into cold sensitivity.

Journal

Details 詳細情報について

  • CRID
    1050845760768368128
  • NII Article ID
    120005842688
  • ISSN
    20411723
  • HANDLE
    2433/216607
  • Text Lang
    en
  • Article Type
    journal article
  • Data Source
    • IRDB
    • CiNii Articles

Report a problem

Back to top