Effective bilinear-biquadratic model for noncoplanar ordering in itinerant magnets

HANDLE オープンアクセス

抄録

Noncollinear and noncoplanar magnetic textures including Skyrmions and vortices act as emergent electromagnetic fields and give rise to novel electronic and transport properties. We here report a unified understanding of noncoplanar magnetic orderings emergent from the spin-charge coupling in itinerant magnets. The mechanism has its roots in effective multiple spin interactions beyond the conventional Ruderman-Kittel-Kasuya-Yosida (RKKY) mechanism, which are ubiquitously generated in itinerant electron systems with local magnetic moments. By carefully examining the higher-order perturbations in terms of the spin-charge coupling, we construct a minimal effective spin model composed of the bilinear and biquadratic interactions with particular wave numbers dictated by the Fermi surface. Taking two-dimensional systems as examples, we find that our effective model captures the underlying physics of the instability toward noncoplanar multiple-Q states discovered recently: a single-Q helical state expected from the RKKY theory is replaced by a double-Q vortex crystal with chirality density waves even for an infinitely small spin-charge coupling on generic lattices [R. Ozawa et al., J. Phys. Soc. Jpn. 85, 103703 (2016)], and a triple-QSkyrmion crystal with a high topological number of two appears while increasing the spin-charge coupling on a triangular lattice [R. Ozawa, S. Hayami, and Y. Motome, Phys. Rev. Lett. 118, 147205 (2017)]. We find that by introducing an external magnetic field, our effective model exhibits a plethora of multiple-Q states. Our effective model will serve as a guide for exploring further exotic magnetic orderings in itinerant magnets, not only in two dimensions but also in three dimensions.

収録刊行物

  • Physical Review B

    Physical Review B 95 (22), 224424-1-224424-20, 2017-06-20

    American Physical Society (APS)

詳細情報 詳細情報について

  • CRID
    1050564288977462400
  • NII論文ID
    120006333806
  • HANDLE
    2115/67007
  • ISSN
    24699950
  • 本文言語コード
    en
  • 資料種別
    journal article
  • データソース種別
    • IRDB
    • CiNii Articles

問題の指摘

ページトップへ