First report of (U–Th)/He thermochronometric data across Northeast Japan Arc: implications for the long-term inelastic deformation

Abstract

(U–Th)/He thermochronometric analyses were performed across the southern part of the Northeast Japan Arc for reconstructing the long-term uplift and denudation history in the region. Apatite (U–Th–Sm)/He ages ranged from 64.3 to 1.5 Ma, while zircon (U–Th)/He ages ranged between 39.6 and 11.0 Ma. Apatite (U–Th–Sm)/He ages showed obvious contrast among the morphostructural provinces; older ages of 64.3–49.6 Ma were obtained in the Abukuma Mountains on the fore-arc side, whereas younger ages of 11.4–1.5 Ma were determined in the Ou Backbone Range (OBR) along the volcanic front and the Asahi Mountains on the back-arc side. The age contrasts are basically interpreted to reflect the differences in the uplift and the denudation histories of the provinces considering the thermal effects of magmatism and timing of the known uplift episodes. Denudation rates were calculated to be <0.1 mm/year in the Abukuma Mountains, ~0.1 to 1 mm/year in the Ou Backbone Range, and ~0.1 to 0.3 mm/year in the Asahi Mountains. The denudation rates tend to increase from the mountain base to the ridges in the OBR (and the Asahi Mountains). This relationship shows a contrast with the previous findings in fault-block mountains in the Southwest (SW) Japan Arc, where the highest denudation rates were estimated near fault(s) along the base(s). This observation might reflect a difference in mountain uplift mechanisms between the NE and the SW Japan Arcs and imply that thermochronometric approaches are useful for constraining uplift and denudation histories at the scale of an island arc, as well as continental orogens. However, careful discussion of magmatic thermal effects is required.

Journal

Citations (8)*help

See more

References(57)*help

See more

Related Projects

See more

Details 詳細情報について

Report a problem

Back to top