Access this Article

Search this Article

Abstract

Na-intercalated FeSe0.5Te0.5 was prepared using the liquid NH3 technique, and a superconducting phase exhibiting a superconducting transition temperature (T-c) as high as 27 K was discovered. This can be called the high-T-c phase since a 21 K superconducting phase was previously obtained in (NH3)(y)NaxFeSe0.5Te0.5. The chemical composition of the high-T-c phase was determined to be (NH3)(0.61(4))Na-0.63(5) Fe0.85Se0.55(3) Te-0.44(2). The x-ray diffraction patterns of both phases show that a larger lattice constant c (i.e., FeSe0.5Te0.5 plane spacing) produces a higher T-c. This behavior is the same as that of metal-doped FeSe, suggesting that improved Fermi-surface nesting produces the higher T-c. The high-T-c phase converted to the low-T-c phase within several days, indicating that it is a metastable phase. The temperature dependence of resistance for both phases was recorded at different magnetic fields, and the critical fields were determined for both phases. Finally, the T-c versus c phase diagram was prepared for the metal-doped FeSe0.5Te0.5, which is similar to that of metal-doped FeSe, although the T-c is lower.

Journal

  • Physical Review B

    Physical Review B 94(17), 174505, 2016-11

    American Physical Society

Codes

  • NII Article ID (NAID)
    120006382536
  • NII NACSIS-CAT ID (NCID)
    AA11187113
  • Text Lang
    ENG
  • Article Type
    journal article
  • ISSN
    2469-9950
  • Data Source
    IR 
Page Top