Access this Article

Abstract

細孔空間を使って異なる分子を交互に配列 --電荷寿命1, 000倍、有機太陽電池の究極構造を実現--. 京都大学プレスリリース. 2018-04-27.Porous titanium oxide materials are attractive for energy-related applications. However, many suffer from poor stability and crystallinity. Here we present a robust nanoporous metal–organic framework (MOF), comprising a Ti12O15 oxocluster and a tetracarboxylate ligand, achieved through a scalable synthesis. This material undergoes an unusual irreversible thermally induced phase transformation that generates a highly crystalline porous product with an infinite inorganic moiety of a very high condensation degree. Preliminary photophysical experiments indicate that the product after phase transformation exhibits photoconductive behavior, highlighting the impact of inorganic unit dimensionality on the alteration of physical properties. Introduction of a conductive polymer into its pores leads to a significant increase of the charge separation lifetime under irradiation. Additionally, the inorganic unit of this Ti-MOF can be easily modified via doping with other metal elements. The combined advantages of this compound make it a promising functional scaffold for practical applications.

Journal

  • Nature Communications

    Nature Communications (9), 2018-04-25

    Springer Nature

Codes

  • NII Article ID (NAID)
    120006462497
  • Text Lang
    ENG
  • Article Type
    journal article
  • ISSN
    2041-1723
  • Data Source
    IR 
Page Top