Depletion of aquaporin 1 decreased ADAMTS-4 expression in human chondrocytes

HANDLE オープンアクセス

抄録

Inflammation serves an important role in the progression of osteoarthritis (OA), and IL-1β may act as a catabolic factor on cartilage, reducing the synthesis of primary cartilage components type II collagen and aggrecan. Aquaporin 1 (AQP1) is a 28-kDa water channel formed of six transmembrane domains on the cell membrane. AQP1 is highly expressed in the anus, gallbladder and liver, and is moderately expressed in the hippocampus, ependymal cells of the central nervous system and articular cartilage. It was hypothesized that AQP1 may be highly expressed in OA cartilage and that it may increase the expression of catabolic factors during inflammatory OA progression. Therefore, the present study evaluated AQP1 functions in human OA articular chondrocytes. Primary chondrocytes were isolated from human hip and knee cartilage tissues, cultured and transfected with AQP1-specific small interfering RNA with or without subsequent IL-1β treatment. In vitro explant culture from hip cartilages were also prepared. Reverse transcription-polymerase chain reaction (RT-PCR) was performed to assess the expression of AQP genes in human articular cartilage, AQP1 immunohistochemistry of the cartilages and explant culture, as well as RT-quantitative PCR, western blotting and immunocytochemistry/immunofluorescence of OA chondrocytes to evaluate the expression of AQP1, and catabolic and anabolic factors. RT-PCR results demonstrated that AQP0, 1, 3, 7, 9, and 11 were expressed in OA chondrocytes. Immunohistochemistry revealed that AQP1 was highly expressed in the superficial to middle zones of OA articular cartilages. Additionally, AQP1 mRNA was significantly higher in OA cartilage and IL-1β treatment significantly increased AQP1 expression in hip explant cartilage. Furthermore, AQP1 downregulation decreased a disintegrin and metalloprotease with thrombospondin motifs (ADAMTS)-4 expression in OA chondrocytes, though it did not affect other associated genes. Immunofluorescence showed that AQP1 and ADAMTS-4 were co-localized. These findings indicated that AQP1 depletion may decrease ADAMTS-4 expression in human OA chondrocytes. Therefore, regulating AQP1 expression may be a strategy to suppress catabolic factors during OA progression.

収録刊行物

詳細情報 詳細情報について

  • CRID
    1050856995323726976
  • NII論文ID
    120006463594
  • ISSN
    17913004
    17912997
  • HANDLE
    20.500.14094/90004834
  • 本文言語コード
    en
  • 資料種別
    journal article
  • データソース種別
    • IRDB
    • CiNii Articles

問題の指摘

ページトップへ