Access this Article

Abstract

The phytohormone auxin indole-3-acetic acid (IAA) regulates nearly all aspects of plant growth and development. Despite substantial progress in our understanding of auxin biology, delineating specific auxin response remains a major challenge. Auxin regulates transcriptional response via its receptors, TIR1 and AFB F-box proteins. Here we report an engineered, orthogonal auxin–TIR1 receptor pair, developed through a bump-and-hole strategy, that triggers auxin signaling without interfering with endogenous auxin or TIR1/AFBs. A synthetic, convex IAA (cvxIAA) hijacked the downstream auxin signaling in vivo both at the transcriptomic level and in specific developmental contexts, only in the presence of a complementary, concave TIR1 (ccvTIR1) receptor. Harnessing the cvxIAA–ccvTIR1 system, we provide conclusive evidence for the role of the TIR1-mediated pathway in auxin-induced seedling acid growth. The cvxIAA–ccvTIR1 system serves as a powerful tool for solving outstanding questions in auxin biology and for precise manipulation of auxin-mediated processes as a controllable switch.ファイル公開:2018-07-22

Journal

  • Nature Chemical Biology

    Nature Chemical Biology 14(3), 299-305, 2018-01-22

    nature

Codes

  • NII Article ID (NAID)
    120006473593
  • Text Lang
    ENG
  • Article Type
    journal article
  • ISSN
    1552-4450
  • Data Source
    IR 
Page Top