Access this Article

Abstract

新しいプラズモン誘起キャリア移動機構の発見 --赤外光エネルギーの利用に期待--. 京都大学プレスリリース. 2018-06-27.Localized surface plasmon resonance (LSPR)-induced hot-carrier transfer is a key mechanism for achieving artificial photosynthesis using the whole solar spectrum, even including the infrared (IR) region. In contrast to the explosive development of photocatalysts based on the plasmon-induced hot electron transfer, the hole transfer system is still quite immature regardless of its importance, because the mechanism of plasmon-induced hole transfer has remained unclear. Herein, we elucidate LSPR-induced hot hole transfer in CdS/CuS heterostructured nanocrystals (HNCs) using time-resolved IR (TR-IR) spectroscopy. TR-IR spectroscopy enables the direct observation of carrier in a LSPR-excited CdS/CuS HNC. The spectroscopic results provide insight into the novel hole transfer mechanism, named plasmon-induced transit carrier transfer (PITCT), with high quantum yields (19%) and long-lived charge separations (9.2 μs). As an ultrafast charge recombination is a major drawback of all plasmonic energy conversion systems, we anticipate that PITCT will break the limit of conventional plasmon-induced energy conversion.

Journal

  • Nature Communications

    Nature Communications (9), 2018-06-13

    Springer Nature

Codes

  • NII Article ID (NAID)
    120006488580
  • Text Lang
    ENG
  • Article Type
    journal article
  • ISSN
    2041-1723
  • Data Source
    IR 
Page Top