Spatial Changes of Urban Heat Island Formation in the Colombo District, Sri Lanka: Implications for Sustainability Planning

Access this Article

Abstract

The formation of surface urban heat islands (SUHIs) can cause significant adverse impacts on the quality of living in urban areas. Monitoring the spatial patterns and trajectories of UHI formations could be helpful to urban planners in crafting appropriate mitigation and adaptation measures. This study examined the spatial pattern of SUHI formation in the Colombo District (Sri Lanka), based on land surface temperature (LST), a normalized difference vegetation index (NDVI), a normalized difference built-up index (NDBI), and population density (PD) using a geospatial-based hot and cold spot analysis tool. Here, 'hot spots' refers to areas with significant spatial clustering of high variable values, while 'cold spots' refers to areas with significant spatial clustering of low variable values. The results indicated that between 1997 and 2017, 32.7% of the 557 divisions in the Colombo District persisted as hot spots. These hot spots were characterized by a significant clustering of high composite index values resulting from the four variables (LST, NDVI (inverted), NDBI, and PD). This study also identified newly emerging hot spots, which accounted for 49 divisions (8.8%). Large clusters of hot spots between both time points were found on the western side of the district, while cold spots were found on the eastern side of the district. The areas identified as hot spots are the more urbanized parts of the district. The emerging hot spots were in areas that had undergone landscape changes due to urbanization. Such areas are found between the persistent hot spots (western parts of the district) and persistent cold spots (eastern parts of the district). Generally, the spatial pattern of the emerging hot spots followed the pattern of urbanization in the district, which had been expanding from west to east. Overall, the findings of this study could be used as a reference in the context of sustainable landscape and urban planning for the Colombo District.

Journal

  • Sustainability

    Sustainability 10(5), 1367, 2018-04

    MDPI

Keywords

Codes

  • NII Article ID (NAID)
    120006501373
  • Text Lang
    ENG
  • Article Type
    journal article
  • ISSN
    2071-1050
  • Data Source
    IR 
Page Top