The weak mutation and strong selection limit of the Moran model satisfies the strong Markov property

Access this Article

Search this Article

Abstract

The Moran model in population genetics is a one-dimensional generalized diffusion process. The weak mutation and strong selection limit process of the Moran model is not a onedimensional generalized diffusion process, but rather a one-dimensional bi-generalized diffusion process. One-dimensional bi-generalized diffusion processes are Markov processes, but not necessarily strong Markov processes, whereas one-dimensional generalized diffusion processes are strong Markov processes. The problem whether the weak mutation and strong selection limit process satisfies the strong Markov property remains. This study shows that the limit process has a strong Markov property.

Journal

  • 人間文化研究科年報(奈良女子大学大学院人間文化研究科)

    人間文化研究科年報(奈良女子大学大学院人間文化研究科) (30), 105-112, 2015-03-31

    奈良女子大学大学院人間文化研究科

Codes

  • NII Article ID (NAID)
    120006657952
  • NII NACSIS-CAT ID (NCID)
    AN10065983
  • Text Lang
    ENG
  • Article Type
    departmental bulletin paper
  • ISSN
    0913-2201
  • Data Source
    IR 
Page Top