Access this Article

Abstract

ビフィズス菌におけるヒトへの適応進化を発見 --母乳オリゴ糖トランスポーターの獲得形質がビフィズスフローラ形成を促す--. 京都大学プレスリリース. 2019-09-05.

The human gut microbiota established during infancy has persistent effects on health. In vitro studies have suggested that human milk oligosaccharides (HMOs) in breast milk promote the formation of a bifidobacteria-rich microbiota in infant guts; however, the underlying molecular mechanism remains elusive. Here, we characterized two functionally distinct but overlapping fucosyllactose transporters (FL transporter-1 and -2) from Bifidobacterium longum subspecies infantis. Fecal DNA and HMO consumption analyses, combined with deposited metagenome data mining, revealed that FL transporter-2 is primarily associated with the bifidobacteria-rich microbiota formation in breast-fed infant guts. Structural analyses of the solute-binding protein (SBP) of FL transporter-2 complexed with 2′-fucosyllactose and 3-fucosyllactose, together with phylogenetic analysis of SBP homologs of both FL transporters, highlight a unique adaptation strategy of Bifidobacterium to HMOs, in which the gain-of-function mutations enable FL transporter-2 to efficiently capture major fucosylated HMOs. Our results provide a molecular insight into HMO-mediated symbiosis and coevolution between bifidobacteria and humans.

Journal

  • Science Advances

    Science Advances 5(8), 2019-08-02

    American Association for the Advancement of Science (AAAS)

Codes

  • NII Article ID (NAID)
    120006716596
  • Text Lang
    ENG
  • Article Type
    journal article
  • ISSN
    2375-2548
  • Data Source
    IR 
Page Top