Delayed mite hatching in response to mechanical stimuli simulating egg predation attempts

Abstract

Delayed or induced hatching in response to predation risk has been reported mainly in aquatic systems, where waterborne cues from predators and injured neighbouring eggs are available. Newly emerged larvae of the terrestrial predatory mite Neoseiulus womersleyi are vulnerable to predation by con- and heterospecific predatory mites, whereas their eggs are not. We examined whether N. womersleyi embryos delay hatching in response to artificial mechanical stimuli that simulates egg predation attempts. When embryos near the hatching stage were artificially stimulated every 5 min for 60 min, most stopped hatching for the duration of the 60-min period, whereas unstimulated embryos did not. Stimulated embryos resumed hatching when the treatment was stopped, and the proportion of hatched stimulated embryos caught up with that of unstimulated embryos within 120 min after stimuli stopped. Since hatching did not stop in response to changes in gravity direction, the effect of direct mechanical stimuli on the eggs was considered a proximate factor in delayed hatching. These results suggest that N. womersleyi embryos recognise immediate predation risk via mechanical stimuli, and delay hatching until the predation risk is reduced.

Journal

Citations (1)*help

See more

References(16)*help

See more

Related Projects

See more

Details 詳細情報について

Report a problem

Back to top