GEMMA CUP-ASSOCIATED MYB1, an Ortholog of Axillary Meristem Regulators, Is Essential in Vegetative Reproduction in Marchantiapolymorpha

Search this article

Abstract

A variety of plants in diverse taxa can reproduce asexually via vegetative propagation, in which clonal propagules with a new meristem(s) are generated directly from vegetative organs. A basal land plant, Marchantia polymorpha, develops clonal propagules, gemmae, on the gametophyte thallus from the basal epidermis of a specialized receptacle, the gemma cup. Here we report an R2R3-MYB transcription factor, designated GEMMA CUP-ASSOCIATED MYB1 (GCAM1), which is an essential regulator of gemma cup development in M. polymorpha. Targeted disruption of GCAM1 conferred a complete loss of gemma cup formation and gemma generation. Ectopic overexpression of GCAM1 resulted in formation of cell clumps, suggesting a function of GCAM1 in suppression of cell differentiation. Although gemma cups are a characteristic gametophyte organ for vegetative reproduction in a taxonomically restricted group of liverwort species, phylogenetic and interspecific complementation analyses support the orthologous relationship of GCAM1 to regulatory factors of axillary meristem formation, e.g., Arabidopsis REGULATOR OF AXILLARY MERISTEMS and tomato Blind, in angiosperm sporophytes. The present findings in M. polymorpha suggest an ancient acquisition of a transcriptional regulator for production of asexual propagules in the gametophyte and the use of the regulatory factor for diverse developmental programs, including axillary meristem formation, during land plant evolution.

Journal

  • Current Biology

    Current Biology 29 (23), 3987-3995.e5, 2019-12-02

    Elsevier BV

Citations (13)*help

See more

References(48)*help

See more

Related Projects

See more

Details 詳細情報について

Report a problem

Back to top