Passive Sole Constraining Method to Stabilize 3D Passive Dynamic Walking

Abstract

Inspired by the function of a toe and a lateral arch of a human foot, we propose a method to stabilize the biped walk by attaching unactuated toes and lateral arches. The toes and lateral arches work as adaptive braking of sagittal and lateral directions. They touch on the ground at the angle where the biped exceedingly inclines. After touching on the floor, the center of rotation changes at the landing positions. This change causes the reduction of the exceeding angular velocities toward sagittal and lateral directions. By setting appropriate heights of the toe and lateral arch during the swing phase, the walking robot is expected to be stabilized. To analyze the effects of the toe, we derived equations of motions and the state transition functions for a simplified 3D passive dynamic walker with toes. We clarified the potential stabilizing effect of the method from numerical simulations and preliminary experiments by a real-world biped with toes. Note that the proper setting of heights and the verification of the effect of lateral arches are on the way.

Journal

Details 詳細情報について

Report a problem

Back to top