Wide-range line shape control of Fano-like resonances in all-dielectric multilayer structures based on enhanced light absorption in photochromic waveguide layers

この論文をさがす

抄録

We have succeeded in controlling the line shape of Fano-like resonances in all-dielectric multilayer structures in a wide range by UV light irradiation. Multilayer structures consisting of a waveguide layer supporting a half-leaky guided mode, a spacer layer, and another waveguide layer supporting a planar waveguide mode are known to exhibit Fano-like line shapes in attenuated total reflection spectra due to coupling between the half-leaky guided mode and the planar waveguide mode. Using a photochromic layer, i.e., a layer doped with spiropyran molecules, as one of the waveguide layers, we controlled the amount of light absorption in the waveguide layer by varying the UV irradiation dose. We demonstrated that the line shape changes dramatically depending on the UV dose, from the electromagnetically induced transparency-like to electromagnetically induced absorption-like line shape (or vice versa) passing through the Fano-like line shape. We also demonstrated that the photochromic response induced by UV irradiation in the Fano-resonant multilayer structure is enhanced by a factor of ∼100 relative to that in a single photochromic layer. Our analyses based on electromagnetic calculations suggest that the dramatic line shape change and the enhanced photochromic response are the consequences of enhanced local electric fields inside the photochromic waveguide layer combined with the photoinduced increase in the imaginary part of the dielectric constant.

収録刊行物

被引用文献 (2)*注記

もっと見る

参考文献 (71)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ