Development of a Data Assimilation Method Using Vibration Equation for Large‐Eddy Simulations of Turbulent Boundary Layer Flows

DOI HANDLE Web Site Web Site Web Site View 1 Remaining Hide 1 Citations 30 References Open Access

Abstract

In order to improve the simulation accuracy, it is effective to use a data assimilation technique which is capable of reproducing more realistic simulated states by incorporating observational data into simulation models. One of the simplest ones among data assimilation techniques is a Newtonian relaxation‐type nudging method which has been widely used in mesoscale meteorological models. In this study, we proposed a data assimilation method using a vibration equation which can incorporate turbulence winds toward target mean winds while maintaining small‐scale turbulent fluctuations as a different approach from the conventional nudging method. First, we conducted test simulations in which nudging is applied in a basic turbulent boundary layer (TBL) flow toward a target one. It is shown that the basic TBL flow can be reasonably nudged toward the target one while maintaining the turbulent fluctuations well when prescribing the natural frequency in the vibration equation smaller than the spectral peak frequency in the TBL flow. Then, we applied the proposed nudging method by incorporating data obtained from meteorological observations located in the actual city of Kyoto. The mean wind velocity profiles were reasonably nudged toward the target observed profile and the turbulence statistics were also favorably maintained. It is concluded that the data assimilation method using the vibration equation successfully nudges toward the target mean winds while maintaining small‐scale turbulent fluctuations well.

Journal

Citations (1)*help

See more

References(30)*help

See more

Related Projects

See more

Report a problem

Back to top