Functional mutations in spike glycoprotein of Zaire ebolavirus associated with an increase in infection efficiency

HANDLE オープンアクセス

抄録

Ebola virus (EBOV) is extremely virulent, and its glycoprotein is necessary for viral entry. EBOV may adapt to its new host humans during outbreaks by acquiring mutations especially in glycoprotein, which allows EBOV to spread more efficiently. To identify these evolutionary selected mutations and examine their effects on viral infectivity, we used experimental–phylogenetic–structural interdisciplinary approaches. In evolutionary analysis of all available Zaire ebolavirus glycoprotein sequences, we detected two codon sites under positive selection, which are located near/within the region critical for the host‐viral membrane fusion, namely alanine‐to‐valine and threonine‐to‐isoleucine mutations at 82 (A82V) and 544 (T544I), respectively. The fine‐scale transmission dynamics of EBOV Makona variants that caused the 2014–2015 outbreak showed that A82V mutant was fixed in the population, whereas T544I was not. Furthermore, pseudotype assays for the Makona glycoprotein showed that the A82V mutation caused a small increase in viral infectivity compared with the T544I mutation. These findings suggest that mutation fixation in EBOV glycoprotein may be associated with their increased infectivity levels; the mutant with a moderate increase in infectivity will fix. Our findings showed that a driving force for Ebola virus evolution via glycoprotein may be a balance between costs and benefits of its virulence.

収録刊行物

詳細情報 詳細情報について

  • CRID
    1050567175332677760
  • NII論文ID
    120006888505
  • ISSN
    13569597
  • HANDLE
    2433/255249
  • 本文言語コード
    en
  • 資料種別
    journal article
  • データソース種別
    • IRDB
    • CiNii Articles

問題の指摘

ページトップへ