Potassium single cation ionic liquid electrolyte for potassium-ion batteries

  • 山本, 大樹
    AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL)・Institute of Advanced Industrial Science and Technology (AIST)・Graduate School of Energy Science, Kyoto University
  • 松本, 一彦
    AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL)・Institute of Advanced Industrial Science and Technology (AIST)
  • 萩原, 理加
    AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL)・Institute of Advanced Industrial Science and Technology (AIST)・Graduate School of Energy Science, Kyoto University
  • Matsumoto, Kazuhiko
    AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL)・Institute of Advanced Industrial Science and Technology (AIST)・Graduate School of Energy Science, Kyoto University
  • Hagiwara, Rika
    AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL)・National Institute of Advanced Industrial Science and Technology (AIST)・Graduate School of Energy Science, Kyoto University

抄録

Potassium-ion batteries (PIBs) are a promising post-lithium-ion battery (LIB), as their resources are abundant and low-cost and may have a higher voltage than LIBs. However, the high operating voltage and extremely high reactivity of potassium metal require a chemically safe electrolyte with oxidative and reductive stabilities. In this study, a potassium single cation ionic liquid (K-SCIL), which contains only K⁺ as the cationic species and has a high electrochemical stability, low flammability, and low vapor pressure, is developed as an electrolyte for PIBs. The mixture of potassium bis(fluorosulfonyl)amide and potassium (fluorosulfonyl)(trifluoromethylsulfonyl)amide at a molar ratio of 55:45 had the lowest melting point of 67 °C. The K⁺ concentration in this K-SCIL is high (8.5 mol dm⁻³ at 90 °C) due to the absence of solvents and bulky organic cations. In addition, the electrochemical window is as wide as 5.6 V, which enables the construction of PIBs with a high energy density. A high current density can be achieved with this K-SCIL, owing to the absence of a K⁺ concentration gradient. The electrolyte was successfully used with a graphite negative electrode, enabling the reversible intercalation/deintercalation of K⁺, as confirmed by X-ray diffraction.

収録刊行物

被引用文献 (1)*注記

もっと見る

参考文献 (43)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ