Collapse of a lipid-coated nanobubble and subsequent liposome formation

Abstract

We investigate the collapse of a lipid-coated nanobubble and subsequent formation of a lipid vesicle by coarse grained molecular dynamics simulations. A spherical nanobubble coated with a phospholipid monolayer in water is a model of an aqueous dispersion of phospholipids under negative pressure during sonication. When subjected to a positive pressure, the bubble shape deforms into an irregular spherical shape and the monolayer starts to buckle and fold locally. The local folds grow rapidly in multiple directions and forming a discoidal membrane with folds of various amplitudes. Folds of small amplitude disappear in due course and the membrane develops into a unilamellar vesicle via a bowl shape. Folds with large amplitude develop into a bowl shape and a multivesicular shape forms. The membrane shape due to bubble collapse can be an important factor governing the vesicular shape during sonication.

Journal

Citations (1)*help

See more

References(49)*help

See more

Related Projects

See more

Details 詳細情報について

Report a problem

Back to top