Temperature dependent thermal conductivity of a suspended submicron graphene ribbon

HANDLE Open Access
  • Li, Qin-Yi
    Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University
  • Takahashi, Koji
    International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University Department of Aeronautics and Astronautics, Kyushu University JST, CREST, Kyushu University
  • Ago, Hiroki
    Institute for Material Chemistry and Engineering, Kyushu University
  • Zhang, Xing
    Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University JST, CREST, Kyushu University
  • Ikuta, Tatsuya
    Department of Aeronautics and Astronautics, Kyushu University JST, CREST, Kyushu University
  • Nishiyama, Takashi
    Department of Aeronautics and Astronautics, Kyushu University JST, CREST, Kyushu University
  • Kawahara, Kenji
    Institute for Material Chemistry and Engineering, Kyushu University

Search this article

Abstract

Thermophysical characterization of graphene is very important for both fundamental and technological research. While most of the existing thermal conductivity measurements are for graphene sheets with sizes larger than 1 lm, the thermal conductivities for suspended submicron graphene ribbons are still very few, although the thermal conductivity of graphene ribbons at the submicron scale is predicted to be much smaller than large graphene and strongly size dependent for both length and width due to the 2D nature of phonon transport. Here, we report the temperature dependent thermal conductivity of a 169-nm wide and 846-nm long graphene ribbon measured by the electrical self-heating method. The measured thermal conductivities range from (12.762.95) W/m/K at 80K to (9326333) W/m/K at 380 K, being (349663) W/m/K at 300 K, following aT2.79 law for the full temperature range of 80K to 380K and aT1.23 law at low temperatures. The comparison of the measured thermal conductance with the ballistic transport limit indicates diffusive transport in this narrow and short ribbon due to phonon-edge as well as phonon-defect scattering. The data were also combined with an empirical model to predict possible width dependence of thermal conductivity for suspended graphene ribbons. These results help understand the 2D phonon transport in suspended submicron graphene ribbons and provide knowledge for controlling thermophysical properties of suspended graphene nanoribbons through size manipulation.

Journal

Related Projects

See more

Details 詳細情報について

  • CRID
    1050861482657557248
  • NII Article ID
    120006954316
  • NII Book ID
    AA11868165
  • ISSN
    10897550
    00218979
  • HANDLE
    2324/4354937
  • Text Lang
    en
  • Article Type
    journal article
  • Data Source
    • IRDB
    • CiNii Articles

Report a problem

Back to top