High capacity and stable all-solid-state Li ion battery using SnO2-embedded nanoporous carbon

Abstract

Extensive research efforts are devoted to development of high performance all-solid-state lithium ion batteries owing to their potential in not only improving safety but also achieving high stability and high capacity. However, conventional approaches based on a fabrication of highly dense electrode and solid electrolyte layers and their close contact interface is not always applicable to high capacity alloy- and/or conversion-based active materials such as SnO2 accompanied with large volume change in charging-discharging. The present work demonstrates that SnO2-embedded nanoporous carbons without solid electrolyte inside the nanopores are a promising candidate for high capacity and stable anode material of all-solid-state battery, in which the volume change reactions are restricted in the nanopores to keep the constant electrode volume. A prototype all-solid-state full cell consisting of the SnO2-based anode and a LiNi1/3Co1/3Mn1/3O2-based cathode shows a good performance of 2040 Wh/kg at 268.6 W/kg based on the anode material weight.

Scientific Reports, 8, 8747; 2018

Journal

Citations (6)*help

See more

References(26)*help

See more

Related Projects

See more

Details 詳細情報について

Report a problem

Back to top