Charge conservation, entropy current and gravitation

Abstract

We propose a new class of vector fields to construct a conserved charge in a general field theory whose energy–momentum tensor is covariantly conserved. We show that there always exists such a vector field in a given field theory even without global symmetry. We also argue that the conserved current constructed from the (asymptotically) timelike vector field can be identified with the entropy current of the system. As a piece of evidence we show that the conserved charge defined therefrom satisfies the first law of thermodynamics for an isotropic system with a suitable definition of temperature. We apply our formulation to several gravitational systems such as the expanding universe, Schwarzschild and Banãdos, Teitelboim and Zanelli (BTZ) black holes, and gravitational plane waves. We confirm the conservation of the proposed entropy density under any homogeneous and isotropic expansion of the universe, the precise reproduction of the Bekenstein–Hawking entropy incorporating the first law of thermodynamics, and the existence of gravitational plane wave carrying no charge, respectively. We also comment on the energy conservation during gravitational collapse in simple models.

Einstein finally warms up to quantum mechanics?: Kyoto University redefines energy to explain black holes. 京都大学プレスリリース. 2021-12-14.

Journal

References(30)*help

See more

Related Projects

See more

Details 詳細情報について

Report a problem

Back to top