The biochemical basis for thermoregulation in heatproducing flowers

抄録

Thermoregulation (homeothermy) in animals involves a complex mechanism involving thermal receptors throughout the body and integration in the hypothalamus that controls shivering and non-shivering thermogenesis. The flowers of some ancient families of seed plants show a similar degree of physiological thermoregulation, but by a different mechanism. Here, we show that respiratory control in homeothermic spadices of skunk cabbage (Symplocarpus renifolius) is achieved by rate-determining biochemical reactions in which the overall thermodynamic activation energy exhibits a negative value. Moreover, NADPH production, catalyzed by mitochondrial isocitrate dehydrogenase in a chemically endothermic reaction, plays a role in the pre-equilibrium reaction. We propose that a law of chemical equilibrium known as Le Châtelier’s principle governs the homeothermic control in skunk cabbage.

収録刊行物

詳細情報 詳細情報について

問題の指摘

ページトップへ