Renewable DNA Proportional-Integral Controller with Photoresponsive Molecules

抄録

A molecular robot is an intelligent molecular system. A typical control problem of molecular robots is to maintain the concentration of a specific DNA strand at the desired level, which is typically attained by a molecular feedback control mechanism. A molecular feedback system can be constructed in a bottom-up method by transforming a nonlinear chemical reaction system into a pseudo-linear system. This method enables the implementation of a molecular proportional-integral (PI) controller on a DNA reaction system. However, a DNA reaction system is driven by fuel DNA strand consumption, and without a sufficient amount of fuel strands, the molecular PI controller cannot perform normal operations as a concentration regulator. In this study, we developed a design method for a molecular PI control system to regenerate fuel strands by introducing photoresponsive reaction control. To this end, we employed a photoresponsive molecule, azobenzene, to guide the reaction direction forward or backward using light irradiation. We validated our renewable design of the PI controller by numerical simulations based on the reaction kinetics. We also confirmed the proof-of-principle of our renewable design by conducting experiments using a basic DNA circuit.

収録刊行物

  • Micromachines

    Micromachines 13 (2), 193-1-193-20, 2022-01-26

    MDPI

被引用文献 (1)*注記

もっと見る

参考文献 (25)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ