Alteration in the Apoptosis Process of Rat Esophageal Epithelium with Hyperproliferation of Indigenous Bacteria under a Physiological Condition

  • UDAYANGA Kankanam Gamage Sanath
    Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
  • YAMAMOTO Kyoji
    Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
  • MIYATA Hidenori
    Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
  • YOKOO Yuh
    Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
  • MANTANI Youhei
    Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
  • TAKAHARA Ei-ichrou
    Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
  • KAWANO Junichi
    Laboratory of Microbiology and Immunology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
  • YOKOYAMA Toshifumi
    Laboratory of Molecular Functional Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
  • HOSHI Nobuhiko
    Laboratory of Molecular Functional Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
  • KITAGAWA Hiroshi
    Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan

Bibliographic Information

Other Title
  • Anatomy : Alteration in the Apoptosis Process of Rat Esophageal Epithelium with Hyperproliferation of Indigenous Bacteria under a Physiological Condition

Search this article

Abstract

The apoptosis process in rat esophageal epithelium was investigated using enzyme-immunohistochemistry and transmission electron microscopy. As a result, Fas and Fas-L were expressed in the epithelial cell membrane and cytoplasm from the stratum spinosum (SS) to the stratum granulosum (SG). No TNF-R1 show immunopositivity in the cell membranes. TNF-α and caspase-8 were not observed in any layer. Caspase-10, cleaved caspase-3, XIAP and DNase-1 were found in the epithelial cytoplasm from the SS to the SG, whereas Bid, Apaf-1 and cleaved caspase-9 were detected only in the SG. Cytochrome c was observed as cytoplasmic granular positivity from the stratum basale (SB) and altered into homogeneous immunopositivity in the SG. Bcl-2 and Bcl-X immunopositivity was detected in cytoplasm from the SB to the SG. Immunoreactions of Bak in the cytoplasm and Bax beneath the cell membrane were observed from the upper portion of the SS with increasing intensity toward the SG. In the sites with the hyperproliferation of indigenous bacteria, TNF-R1, TNF-α and caspase-8 were detected in the SG and the immunopositive intensities of Bid, Apaf-1 and cleaved caspase-9 were altered to be strong. Prominently swollen cells and decreased mitochondria were ultrastructurally confirmed in the uppermost layers of stratum corneum. These findings suggest that the Fas-Fas-L-interaction initially induces apoptosis through a mitochondria-independent pathway and secondarily through a mitochondria-dependent pathway, leading to eventual epithelial cell death in the rat esophageal epithelium. The bacterial stimuli probably enhance the mitochondria-dependent pathway through the TNF-R1-TNF-α interaction.

Journal

References(45)*help

See more

Related Projects

See more

Details 詳細情報について

Report a problem

Back to top