Integrated Modeling of Whole Tokamak Plasma

Access this Article

Author(s)

Abstract

Development and integration of models for the whole tokamak plasma have progressed on the basis of experimental analyses and first principle simulations. Integrated models of core, edge-pedestal and scrape-off-layer (SOL)-divertor clarified complex and autonomous features of reactor relevant plasmas. The integrated core plasma model including an anomalous transport of alpha particles by Alfven eigenmodes is developed in the core transport code TOPICS-IB and indicates the degradation of fusion performance. The integrated rotation model is developed in the advanced transport code TASK/TX and clarifies the mechanism of alpha particle-driven toroidal flow. A transport model of high-Z impurities is developed and predicts large inward pinch in a plasma rotating in the direction counter to the plasma current. TOPICS-IB is extended to include the edge-pedestal model by integrating with the stability code, simple SOL-divertor and pellet models, and clarifies the mechanism of pellet triggered ELM. The integrated SOL-divertor code SONIC is further integrated with TOPICS-IB and enables to study and design operation scenarios compatible with both the high confinement in the core and the low heat load on divertor plates.

Journal

  • Plasma and Fusion Research

    Plasma and Fusion Research (6), 2403065-2403065, 2011

    The Japan Society of Plasma Science and Nuclear Fusion Research

Codes

Page Top