Numerical Analysis of Quantum Mechanical ∇<i>B </i>Drift II

Access this Article

Search this Article

Author(s)

Abstract

We have solved the two-dimensional time-dependent Schrödinger equation for a single particle in the presence of a non-uniform magnetic field for initial speed of 10-100 m/s, mass of the particle at 1-10 <i>m</i><sub>p</sub>,where <i>m</i><sub>p </sub>is the mass of a proton. Magnetic field at the origin of 5-10 T, charge of 1-4 <i>e</i>, where <i>e </i>is the charge of the particle and gradient scale length of 2.610 × 10<sup>−5 </sup>- 5.219 m. It w as numerically found that the variance, or the uncertainty, in position can be expressed as d<i>σ</i><sup>2</sup><i><sub>r </sub></i>/d<i>t </i>= 4.1<i>ħv</i><sub>0</sub>/<i>qB</i><sub>0</sub><i>L</i><i><sub>B</sub></i>, where <i>m </i>is the mass of the particle, <i>q </i>is the charge, <i>v</i><sub>0 </sub>is the initial speed of the corresponding classical particle, <i>B</i><sub>0 </sub>is the magnetic field at the origin and <i>L</i><i><sub>B </sub></i>is the gradient scale length of the magnetic field. In this expression, we found out that mass, <i>m </i>does not affect our newly developed expression.

Journal

  • Plasma and Fusion Research

    Plasma and Fusion Research 7(0), 2401034-2401034, 2012

    The Japan Society of Plasma Science and Nuclear Fusion Research

Codes

  • NII Article ID (NAID)
    130003366244
  • NII NACSIS-CAT ID (NCID)
    AA12346675
  • Text Lang
    ENG
  • Article Type
    journal article
  • Data Source
    IR  J-STAGE 
Page Top