Modeling and Control for Engine-in-the-Loop Simulation System

  • KANG Mingxin
    Department of Engineering and Applied Sciences, Sophia University
  • SHEN Tielong
    Department of Engineering and Applied Sciences, Sophia University

抄録

This paper presents a control scheme of engine-dynamometer system performing real gasoline engine operation in virtual driver-vehicle-road simulation conditions. The focus is on the transient behavior of the dynamometer speed control during engine-in-the-loop simulation, and a control-oriented model of the dynamometer is constructed. Based on the model, the generalized predictive controller is designed as the external control loop of the existing dynamometer controller to improve the response of the engine-dynamometer system, which reduces the synchronizing speed error between actual engine-dynamometer and the virtual driveline-vehicle model. The performance of the proposed control scheme is verified through comparison experiments including using the original control without the external control loop and a conventional proportion-differentiation control in the external control loop. The results indicate that the generalized predictive control yields significant improvement in terms of response ability. Finally, a speed following test using the proposed control scheme is conducted, which demonstrates the fast response of the engine-dynamometer system during a transient simulation process.

収録刊行物

参考文献 (4)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ