An Explicit Formula for the Discrete Power Function Associated with Circle Patterns of Schramm Type

Access this Article

Author(s)

Abstract

We present an explicit formula for the discrete power function introduced by Bobenko, which is expressed in terms of the hypergeometric τ functions for the sixth Painlevé equation. The original definition of the discrete power function imposes strict conditions on the domain and the value of the exponent. However, we show that one can extend the value of the exponent to arbitrary complex numbers except even integers and the domain to a discrete analogue of the Riemann surface. Moreover, we show that the discrete power function is an immersion when the real part of the exponent is equal to one.

Journal

  • Funkcialaj Ekvacioj

    Funkcialaj Ekvacioj 57(1), 1-41, 2014

    Division of Functional Equations, The Mathematical Society of Japan

Codes

  • NII Article ID (NAID)
    130003391675
  • Text Lang
    ENG
  • ISSN
    0532-8721
  • Data Source
    J-STAGE 
Page Top