Fabrication of Nanoengineered Metallic Structures and Their Application to Nonlinear Photochemical Reactions

  • Ueno Kosei
    Research Institute for Electronic Science, Hokkaido University PRESTO, Japan Science and Technology Agency
  • Misawa Hiroaki
    Research Institute for Electronic Science, Hokkaido University

抄録

We used metallic nanoparticles exhibiting localized surface plasmon resonance and electromagnetic (EM) field enhancement effects induced by plasmon excitation for the photochemical reaction field; this approach makes it possible to increase the probability of an interaction between photons and the materials. EM field enhancement effects induced by gold nanostructures were elucidated using two-photon-induced photoluminescence from nanogap-spaced gold nanoparticles. The photoluminescence was promoted mainly in the surface regions of the gold nanoblocks adjacent to the nanogaps due to the EM field enhancement effect. To elucidate the near-field intensity distribution of the nanogap gold structures, we investigated the photopolymerization of a commercially available negative photoresist assisted by EM field enhancement in the nanogaps separating the gold nanoblocks. Photopolymerization rates were enhanced by several orders of magnitude in the gold nanoblock structures that contained nanogaps narrower than 10 nm. We propose two surface plasmon-assisted nanolithography techniques based on spatially selective photochemical reactions promoted by the EM field enhancement effect. The first method uses ultimate near-field lithography with a local near-field distribution induced in the nanogaps, and the second technique uses the scattering component of multipole plasmon resonance as an exposure mechanism. These lithographic techniques represent a type of application based on plasmon-enhanced chemical reactions.

収録刊行物

被引用文献 (3)*注記

もっと見る

参考文献 (95)*注記

もっと見る

関連プロジェクト

もっと見る

キーワード

詳細情報 詳細情報について

問題の指摘

ページトップへ