Martensitic Transformation and Superelastic Properties of Ti-Nb Base Alloys

Access this Article

Search this Article

Author(s)

Abstract

Ti-Nb base alloys have been proposed as prospective candidates for Ni-free biomedical superelastic alloys due to their excellent mechanical properties with good biocompatibility, and many kinds of Ti-Nb base alloys exhibiting shape memory effect or superelasticity have been developed up to now. However, typical Ti-Nb base superelastic alloys show a small recovery strain which is less than one third of the recovery strain of practical Ti-Ni superelastic alloys. Over the last decade there have been extensive efforts to improve the properties of Ti-Nb base superelastic alloys through microstructure control and alloying. Low temperature annealing and aging are very effective to increase the critical stress for slip due to fine subgrain structure and precipitation hardening. The addition of interstitial alloying elements such as O and N raises the critical stress for slip and improves superelastic properties. In this paper, the roles of alloying elements on the martensitic transformation temperature, crystal structure, microstructure and deformation behavior in the Ti-Nb base alloys are reviewed and the alloy design strategy for biomedical superelastic alloys is proposed.

Journal

  • MATERIALS TRANSACTIONS

    MATERIALS TRANSACTIONS 56(5), 625-634, 2015

    The Japan Institute of Metals and Materials

Codes

  • NII Article ID (NAID)
    130005065978
  • NII NACSIS-CAT ID (NCID)
    AA1151294X
  • Text Lang
    ENG
  • ISSN
    1345-9678
  • NDL Article ID
    026355360
  • NDL Call No.
    Z53-J286
  • Data Source
    NDL  J-STAGE 
Page Top