Resistance-Switching Characteristics of Si-rich Oxide Evaluated by Using Ni Nanodots as Electrodes in Conductive AFM Measurements

Abstract

Ni nanodots (NDs) used as nano-scale top electrodes were formed on a 10-nm-thick Si-rich oxide (SiOx)/Ni bottom electrode by exposing a 2-nm-thick Ni layer to remote H2-plasma (H2-RP) without external heating, and the resistance-switching behaviors of SiOx were investigated from current-voltage (I–V) curves. Atomic force microscope (AFM) analyses confirmed the formation of electrically isolated Ni NDs as a result of surface migration and agglomeration of Ni atoms promoted by the surface recombination of H radicals. From local I–V measurements performed by contacting a single Ni ND as a top electrode with a Rh coated Si cantilever, a distinct uni-polar type resistance switching behavior was observed repeatedly despite an average contact area between the Ni ND and the SiOx as small as ∼ 1.9 × 10-12cm2. This local I–V measurement technique is quite a simple method to evaluate the size scalability of switching properties.

Journal

Citations (2)*help

See more

References(6)*help

See more

Details 詳細情報について

Report a problem

Back to top