Altered Microglia in the Amygdala Are Involved in Anxiety-related Behaviors of a Copy Number Variation Mouse Model of Autism

この論文をさがす

抄録

Background and Purpose: Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a strong genetic basis. Although anxiety is a common major psychiatric condition in ASD, the underlying mechanisms of the anxiety are poorly understood. In individuals with ASD, evidence indicates a structural abnormality in the amygdala, a key component involved in anxiety and social behavior. Microglia, which are central nervous system-resident immune cells implicated in neurodevelopmental processes, are also reportedly altered in ASD. In the present study, we examined the involvement of microglia in the anxiety-related behaviors of ASD model mouse. Methods: Mice that have a 6.3-Mb paternal duplication (patDp/+) corresponding to human chromosome 15q11-q13 were used as an ASD model. Iba1, a microglial activation marker, was examined in the amygdala using immunofluorescence. Effects of perinatal treatment with minocycline, a microglial modulator, on anxiety-related behaviors were examined in neonatal and adolescent patDp/+ mice. Results: In patDp/+ mice, Iba1 was decreased in the basolateral amygdala at postnatal day 7, but not at postnatal days 37-40. Perinatal treatment with minocycline restored the Iba1 expression and reduced anxiety-related behaviors in patDp/+ adolescent mice. Conclusions: Perinatal microglia in the basolateral amygdala may play a pathogenic role in the anxiety observed in a mouse model of ASD with duplication of human chromosome 15q11-q13.

収録刊行物

  • 日医大誌

    日医大誌 82 (2), 92-99, 2015

    日本医科大学医学会

被引用文献 (3)*注記

もっと見る

参考文献 (49)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ