パラレルリンク型ロボットによる超音波治療デバイスの位置および接触力のハイブリット制御システムの開発  [in Japanese] Hybrid Position/Force Control System of the Ultrasonic Treatment Device by Parallel-link Robot  [in Japanese]

Access this Article

Author(s)

    • 夏目 薫 NATSUME Kaoru
    • 東京農工大学大学院生物システム応用科学府 Grad. School of Bio-Application and Systems Eng., Tokyo Univ. of Agriculture and Technology
    • 入澤 佐智恵 IRISAWA Sachie
    • 東京農工大学大学院生物システム応用科学府 Grad. School of Bio-Application and Systems Eng., Tokyo Univ. of Agriculture and Technology
    • 小野木 真哉 [他] ONOGI Shinya
    • 東京農工大学大学院生物システム応用科学府 Grad. School of Bio-Application and Systems Eng., Tokyo Univ. of Agriculture and Technology
    • 望月 剛 MOCHIZUKI Takashi
    • 東京農工大学大学院生物システム応用科学府 Grad. School of Bio-Application and Systems Eng., Tokyo Univ. of Agriculture and Technology
    • 桝田 晃司 MASUDA Kohji
    • 東京農工大学大学院生物システム応用科学府 Grad. School of Bio-Application and Systems Eng., Tokyo Univ. of Agriculture and Technology

Abstract

Microbubbles are widely used as contrast agents in ultrasound diagnosis. Microbubbles may also has therapeutic uses in the heat amplification of high-intensity focused ultrasound ablation or as carriers of acoustic targeted drug/gene delivery therapy. However, microbubbles injected into a blood vessel are diffused throughout the whole body;therefore, their efficiency is still limited. If microbubbles could be controlled <I>in vivo</I>, their efficiency and efficacy would be significantly improved. To address this issue, we have proposed a technique that controls microbubble behavior in blood vessels using ultrasound emitted from the body surface. To apply the technique <I>in vivo</I>, robotic ultrasound transducer positioning on body surface is required. For this purpose, we have developed a robotic system and confirmed that microbubble can be manipulated by the system. In more practical condition, focal length of an ultrasound transducer has to be considered. To address the issue, we propose a control system considering the focal length in this study. The system consists of a parallel-link robot for ultrasound transducer positioning, a robot controller, and an optical tracking device. The robot has three arms, and a transducer holder, and a six-axis force sensor. The robot controller generates ultrasound emission plans using body surface position measured by the tracking device, and manipulate the robot. As for validation of the system, we performed following experiments;1) positioning accuracy evaluation without contact, 2) evaluation of contact forces control, and 3) <I>in vitro</I> ultrasound emission tests. From the first experiment, positioning accuracy was less than 1mm. As for the contact force control validation, the system could keep required reaction force for ultrasound emission on a phantom surface within 1.5mm errors. In the third experiment, the errors in the perpendicular direction of the ultrasound axis and the direction of the axis were 0.71mm and 5.52mm, respectively. From the results, we confirmed that the system could emit ultrasound to a target by using a hydrophone in a poly(ethylene glycol) monomethacrylate (PEGMA) phantom. Consequently, the results demonstrated that the proposed system could generate appropriate plan and manipulate an ultrasound transducer on body surface considering contact condition with body surface.

Journal

  • Transactions of Japanese Society for Medical and Biological Engineering

    Transactions of Japanese Society for Medical and Biological Engineering 53(1), 21-31, 2015

    Japanese Society for Medical and Biological Engineering

Codes

  • NII Article ID (NAID)
    130005084163
  • NII NACSIS-CAT ID (NCID)
    AA11633569
  • Text Lang
    JPN
  • ISSN
    1347-443X
  • NDL Article ID
    026346283
  • NDL Call No.
    Z19-108
  • Data Source
    NDL  J-STAGE 
Page Top