Scanning Electrochemical Microscopy as a Characterization Tool for Reduced Graphene Oxide Field Effect Transistors

抄録

Reduced graphene oxide coated SiO2/Si substrates were obtained by wet-chemical reduction of graphene oxide for the use as semiconductor material in field-effect transistors. The morphological and chemical characterization was done by using SEM, Raman spectroscopy and XPS. Raman and XPS measurements can characterize the success of the graphene-oxide reduction, but only for small parts spots of the surface (e.g. 0.41 μm2 laser spot size with Raman). In order to evaluate larger surface areas and the electrochemical activity of the graphene oxide and reduced graphene oxide, additional spectroscopic measurements using the SECM were performed. The samples coated with unreduced graphene oxide showed no electrochemical activity, while reduced graphene oxide samples showed conducting properties. Further information about the topology of the surface was obtained by applying the SECM constant distance mode. The degree of graphene coverage was calculated from SECM data and compared to the coverage obtained by SEM. It was found that 68±7% coverage is sufficient to ensure electronic contact between the Source and Drain electrodes (resistance less than 1 kΩ). Functionality of the fabricated field effect transistors was demonstrated by titration of pH solutions and characterization of the characteristic curves. [DOI: 10.1380/ejssnt.2015.366]

収録刊行物

被引用文献 (1)*注記

もっと見る

参考文献 (6)*注記

もっと見る

詳細情報 詳細情報について

  • CRID
    1390282680162158464
  • NII論文ID
    130005088342
  • DOI
    10.1380/ejssnt.2015.366
  • ISSN
    13480391
  • 本文言語コード
    en
  • データソース種別
    • JaLC
    • Crossref
    • CiNii Articles
  • 抄録ライセンスフラグ
    使用不可

問題の指摘

ページトップへ