On radial symmetry and its breaking in the Caffarelli-Kohn-Nirenberg type inequalities for p=1 On radial symmetry and its breaking in the Caffarelli-Kohn-Nirenberg type inequalities for <i>p </i>= 1

この論文にアクセスする

この論文をさがす

著者

抄録

The main purpose of this article is to study the Caffarelli-Kohn-Nirenberg type inequalities (1.2) with <i>p </i>= 1. We show that symmetry breaking of the best constants occurs provided that a parameter |γ|<i> </i>is large enough. In the argument we effectively employ equivalence between the Caffarelli-Kohn-Nirenberg type inequalities with <i>p </i>= 1 and isoperimetric inequalities with weights.

収録刊行物

  • Mathematical journal of Ibaraki University

    Mathematical journal of Ibaraki University 47(0), 49-63, 2015

    茨城大学 理学部 数学教室

各種コード

  • NII論文ID(NAID)
    130005100042
  • NII書誌ID(NCID)
    AA11169155
  • 本文言語コード
    ENG
  • 資料種別
    journal article
  • ISSN
    1343-3636
  • データ提供元
    IR  J-STAGE 
ページトップへ