An FPGA Implementation for a Flexible-Length-Arithmetic Processor Employing the FDFM Processor Core Approach

  • KAWAMOTO Tatsuya
    Department of Information Engineering, Hiroshima University
  • ZHOU Xin
    Department of Information Engineering, Hiroshima University
  • BORDIM Jacir L.
    Department of Computer Science, University of Brasilia
  • ITO Yasuaki
    Department of Information Engineering, Hiroshima University
  • NAKANO Koji
    Department of Information Engineering, Hiroshima University

抄録

<p>Algorithms requiring fast manipulation of multiple-length numbers are usually implemented in hardware. However, hardware implementation, using HDL (Hardware Description Language) for instance, is a laborious task and the quality of the solution relies heavily on the designer expertise. The main contribution of this work is to present a flexible-length-arithmetic processor based on FDFM (Few DSP slices and Few Memory blocks) approach that supports arithmetic operations on multiple-length numbers using FPGAs (Field Programmable Gate Array). The proposed processor has been implement on the Xilinx Virtex-6 FPGA. Arithmetic instructions of the proposed processor architecture include addition, subtraction, and multiplication of integer numbers exceeding 64-bits. To reduce the burden of implementing algorithm directly on the FPGA, applications requiring multiple-length arithmetic operations are written in a C-like language and translated into a machine program. The machine program is then transferred and executed on the proposed architecture. A 2048-bit RSA encryption/decryption implementation has been used to assess the goodness of the proposed approach. Experimental results shows that the computing time, using the proposed architecture, of a 2048-bit RSA encryption takes only 2.2 times longer than a direct FPGA implementation. Furthermore, by employing multiple FDFM cores for the same task, the computing time reduces considerably.</p>

収録刊行物

被引用文献 (1)*注記

もっと見る

参考文献 (9)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ